

Variedad para un rectificado correcto

El empleo de herramientas abrasivas de altas prestaciones es, hoy en día, un factor importante para el funcionamiento y la rentabilidad de productos en prácticamente todos los sectores industriales. El progreso en el desarrollo de herramientas va parejo con una optimización continua de las propiedades de los abrasivos que distribuimos en todo el mundo desde hace más de 80 años bajo la marca **ATLANTIC**.

ATLANTIC es su socio competente para la producción, orientada al servicio y al cliente, de abrasivos aglomerados en todos los tipos (corindón, carburo de silicio, corindón sinterizado, diamante y nitruro de boro cúbico) con los aglomerantes de tipo resinoide v cerámico.

Más posibilidades - de la A a la Z en millones de variantes

Desde la industria del automóvil, pasando por la industria de acero y rodamientos hasta la industria auxiliar, se utilizan herramientas abrasivas ATLANTIC. Según el perfil de requisitos se consiguen altas prestaciones de arranque de viruta y acabados superficiales de calidad con las herramientas abrasivas **ATLANTIC**.

A día de hoy, la empresa fabrica unos 40.000 modelos básicos sobre los cuales se pueden realizar multitud de variaciones.

Capacidad principal

Los diversos requisitos de aplicación de los abrasivos no suelen permitir aferrarse a especificaciones válidas con carácter general. La especificación se elabora específicamente a la medida del perfil de requisitos.

- Muelas abrasivas y segmentos
- Muelas de diamante y CBN
- Barritas de bruñir y de superacabado

Índice de contenidos

Método de producción, sistemas de gestión	4/5/6
Marcado de las muelas abrasivas, abrasivos, marcado de tamaño de grano	7/8
Dureza, estructura, agentes de porosidad, aglomerantes	9/10
Formas ISO, diagramas de las formas ISO	11/12/13

creative & dynamic

Para todas las aplicaciones industriales

ATLANTIC es una de las empresas líderes en abrasivos aglomerados.

Las muelas **ATLANTIC** especificadas individualmente obtienen tan altas prestaciones en arranque de viruta como en el acabado de superficie de máxima calidad en todos los sectores de aplicación.

Ofrecemos muelas en aglomerante cerámico para velocidad máximas de trabajo convencionales de hasta 40 m/s y velocidades máximas de trabajo especiales de 50 m/s, 63 m/s, 80 m/s, 100 m/s y 125 m/s así como muelas en aglomerante resinoide para velocidades máximas de trabajo de hasta 50 m/s y para velocidades máximas de trabajo especiales de 63 m/s y 80 m/s.

Lo más importante: precisión y rentabilidad

Las muelas abrasivas de **ATLANTIC** se pueden adaptar individualmente y con exactitud a los requisitos correspondientes de la pieza a mecanizar. Nuestros procesos definidos de fabricación junto con las tecnologías de fabricación más modernas garantizan la seguridad, la fiabilidad y un estándar de calidad invariablemente elevado.

La gama de abrasivos **ATLANTIC** ofrece posibilidades de variación de estructuras que van desde muy densas a extremadamente abiertas. La conservación de la forma y la resistencia se garantizan utilizando materiales aglomerantes y tipos de abrasivos que se adecúan exactamente los unos con los otros.

La fabricación, desde la entrada de los materiales hasta el envío del pedido, se realiza aplicando la ingeniería de procesos más moderna. Con las muelas abrasivas **ATLANTIC** máquinas de rectificado pueden utilizar su potencia máxima: **precisión y rentabilidad.**

Rodamientos de bolas

Válvulas

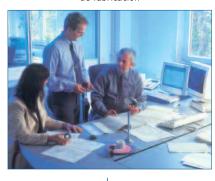
Piezas de bomba de inyección

Barras abrasivas, piedras de repasar, segmentos, perfiles ISO	
Montaje y diamantado, velocidades de corte, refrigerante	16/17
Rectificado plano, rectificado cilíndrico exterior entre puntas y sin centros	18/19
Rectificado de barras, rectificado cilíndrico de interiores,	
rectificado de engranes, rectificado de roscas	20/21
Rectificado de cilindros	22/23

Proceso de producción

La ingeniería de procesos más moderna para los estándares de calidad más elevados

La fabricación de los abrasivos de calidad, desde la entrada de los materiales hasta el envío del pedido, se realiza aplicando la ingeniería de procesos más moderna. La conjunción de todos los factores es la condición básica de los productos punteros con los que la fábrica **ATLANTIC** apoya a sus clientes

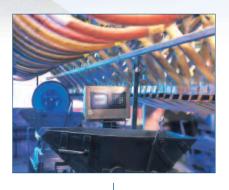

en la realización de sus objetivos empresariales, convirtiéndose así en su socio fiable – **cooperación constructiva para el progreso y la mejora continua.**

Proceso de fabricación

Preparación del trabajo

Establecimiento de los parámetros de fabricación

Asesoría técnica



Materias primas

Control de calidad

Comprobación de las materias primas conforme al control de calidad estándar

Almacenamiento de las materias primas

Mezclado

Mezclado de grano y aglomerante con las recetas prefijadas

Prensado de los abrasivos conforme a los papeles de fabricación

Abrasivos con aglomerante de cerámica: cocción

Abrasivos con aglomerante de resina: endurecimiento

Modulo E, dureza, peso específico

Aplanamiento, refrentado, perfilado

Control final y rotulación

Control conforme a las normas y directivas de aplicación

Sistemas de gestión certificados

Los sistemas de gestión certificados documentan nuestra organización secuencial, orientada a la información, que garantiza la calidad, el respeto al medio ambiente y la seguridad laboral.

ATLANTIC trabaja conforme a
DIN EN ISO 9001 y DIN EN ISO 14001.
La inspección regular de todos los
criterios de calidad en las distintas
áreas la proporcionan auditorías internas. Los estándares elevados garantizan un trabajo de calidad y precisión.
Calidad con la que cuenta y con la que
puede avanzar.

Denominación de muelas abrasivas - materiales abrasivos

Un código alfanumérico especifica los productos abrasivos **ATLANTIC**. Gracias a una conjunto de procesos de control complementarios se garantiza el cumplimiento de la especificación. La documentación de los datos garantiza una trazabilidad y reproducibilidad de los productos abrasivos **ATLANTIC**.

Materiales abrasivos

Se aplican como materiales abrasivos casi exclusivamente materiales duros cristalinos de fabricación sintética. Los materiales abrasivos convencionales más utilizados son el corindón (óxido de aluminio) y el carburo de silicio.

EK1 80B H 8 V Y 257

- 1 Materiales abrasivos
- 2 Tamaño de grano
- 3 Combinación de grano*
- 4 Grado de dureza
- 5 Estructura
- 6 Tipo de aglomerante
- 7 Tipo de aglomerante ATLANTIC
- 8 Porosidad*
- * Estos datos son opcionales

Corindón puro

El corindón es un óxido de aluminio (Al_2O_3) cristalino y se divide, por pureza creciente, en corindón normal, corindón semipuro y corindón puro. El corindón normal y semipuro se obtiene por fundición de bauxita calcinada y el corindón de alúmina pura en un horno eléctrico de arco, a unos $2000\,^{\circ}$ C. Por medio de diversos aditivos y un enfriado determinado, se varía la viscosidad del grano. A mayor proporción de Al_2O_3 , mayor será la dureza y la acritud del grano.

Corindón sinterizado microcristalino

Los corindones sinterizados microcristalinos se distinguen de los corindones puros en su fabricación y propiedades. Por su proceso especial de fabricación, en el corindón sinterizado se forma una estructura granular especialmente homogénea y finamente cristalina.

La estructura finamente cristalina sólo permite la aparición de pequeñas partículas en caso de desgaste granular creciente – de esta forma, se aprovecha al máximo el grano abrasivo.

Carburo de silicio

El carburo de silicio (SiC) es un producto puramente sintético y se obtiene en el horno eléctrico de resistencia a partir de arena de sílice y coque a unos 2200 °C. Se distinguen el carburo de silicio verde y el negro con viscosidad ligeramente creciente.

El carburo de silicio es más duro, más acre y de cantos más vivos que el corindón. El carburo de silicio se aplica mayoritariamente con materiales duros y acres como fundición gris y metal duro así como con metales no férricos.

Corindón normal 95-96% Al₂O₃ Notación abrev. NK En los tipos NK1 a NK9 Corindón semipuro 97-98% Al₂O₃ Notación abrev. HK En los tipos HK1 a HK9

Corindón puro

Corindón puro 99,5% Al₂O₃ Notación abrev. EK En los tipos EK1 a EK9

Corindón sinterizado microcristalino Notación abrev. EB o EX En los tipos EX1 a EX9

Corindón sinterizado microcristalino

Carburo de silicio

Notación abrev. SC En los tipos SC1 a SC9

Corindon sinterizado microcristalino

Notación abrev. SB o SX En los tipos SX1 a SX9

Carburo de silicio

257

Marcado de tamaños de grano

Para los productos **ATLANTIC** se utilizan tamaños de grano de abrasivos conforme a DIN ISO 6344. Los granos abrasivos se clasifican mediante cribas normalizadas en distintas categorías de tamaño.

El tamaño de grano nominal se obtiene por el número de mallas de la criba por pulgada (mesh). Así, por ejemplo, el número 60 significa que la criba respectiva presenta 60 mallas por pulgada. Cuanto mayor sea el número, tanto más fino es el grano abrasivo. A partir de un tamaño de grano de 240, el grano abrasivo deja de clasificarse por cribas normalizadas, sino que se hace por un complejo sistema de sedimentación.

La comparativa internacional

En la tabla siguiente se detalla una comparativa de los distintos estándares internacionales.

En la tabla siguiente se detalla una comparativa de los distintos estándares internacionales. Marcado de Diámetro medio de grano en µm				
tamaño de grano (mesh)	DIN ISO 6344 JIS ANSI			
8 8	2600			
10	2200			
12	1850	1850	1850	
14	1559	1030	1030	
16	1300	1300	1300	
20	1100	950	950	
24	780	780	780	
30	650	650	650	
36	550	550	550	
40	330	390	330	
46	390	390	390	
50	390	330	390	Macrograno
60	270	270	270	i laci ograno
70	230	270	230	
80	190	190	190	
90	160	190	160	
100	140	165	140	
120	120	120	120	
150	95	95	95	
180	80	80	80	
200	70	60	60	
220	60	70	70	
240	45	57	57	
280	45	48	37	
320	29	40	29	
360	29		23	
400	17	35 30		
			17	
500 600	13 9	25 20	13 9	
700	9	17	9	Migrague
	7		7	Micrograno
800		14		
1000	5	12	4	
1200	3	10	3	
1500	2	8		
2000	1	7		
2500		5		
3000		4		
4000		3		
6000		2		
8000		1		

Dureza – Estructura – Agente de porosidad

Dureza de muelas abrasivas

La dureza indica la resistencia con la que el aglomerante mantiene el grano abrasivo dentro del cuerpo abrasivo. La dureza se indica con letras indicativas, en las que **A significa muy blando y Z muy duro.**

Grado de dureza

A a D	extremadamente blando	
E a G	muy blando	
НаК	blando	
L a O	medio	
PaS	duro	
TaZ	extremadamente duro	

El método Grindo-Sonic

Con el método Grindo-Sonic se determina la oscilación natural del cuerpo abrasivo mediante medición de frecuencia. Aquélla depende de las propiedades físicas y de la dimensión. A partir de los valores medidos, se obtiene el valor del módulo E que sirve como magnitud indicativa para estimar la dureza del cuerpo abrasivo.

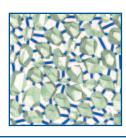
El método Grindo-Sonic

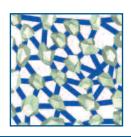
Chorro de arena

En este método de prueba de dureza se lanza neumáticamente en el cuerpo abrasivo un chorro de arena de sílice bajo condiciones definidas. Con el impacto del chorro sobre la superficie del cuerpo abrasivo se desprenden del compuesto partículas granulares y de aglomerante y se origina un ahondamiento en la superficie del cuerpo abrasivo. Cuanto más blando sea el cuerpo abrasivo, más profunda es la marca.

Chorro de arena

Estructura


La estructura de una muela abrasiva se indica a través de un número que va de 1 a 18 y define la distancia de los granos abrasivos entre sí dentro de un cuerpo abrasivo. Los números de estructura bajos identifican distancias entre granos pequeñas, los números altos distancias grandes.


1 a 4	denso
5 a 7	normal
8 a 11	abierto
12 a 18	muy abierto

Agente porógeno

A través de la proporción de grano y aglomerante se determina el volumen poroso. Por ejemplo, mediante un mayor espacio poroso se puede conducir más refrigerante a la zona de contacto abrasivo para disminuir el riesgo de sobrecalentamiento. La textura del abrasivo se puede ajustar a la aplicación correspondiente añadiendo agentes porógenos por tipo, tamaño y cantidad.

Estructura densa

Estructura abierta

Aglomerantes

Aglomerante

El aglomerante tiene la misión de mantener el grano en la muela abrasiva hasta que se haya despuntado por el proceso de corte. Entonces, el aglomerante debe soltar el grano de forma que se aplica un nuevo grano, afilado. Esta propiedad se puede adaptar al proceso abrasivo correspondiente con el tipo de aglomerante y la cantidad del mismo.

Las muelas abrasivas **ATLANTIC** se fabrican con dos grupos de aglomerantes: aglomerantes cerámicos (**letra V**) y aglomerantes resinoides (**letras RE**).

Aglomerante cerámico

Los aglomerantes cerámicos se componen de caolín, cuarzo, feldespato y fibras de vidrio. Mezclando estos componentes se puede ajustar la característica del aglomerante. Los aglomerantes cerámicos son químicamente resistentes frente a los aceites y las emulsiones, pero frágiles y sensibles a los choques. El desgaste del aglomerante lo produce la presión abrasiva.

Aglomerante resinoide

Los aglomerantes resinoides se fabrican principalmente con base de resina fenolica. Dentro de este tipo de aglomerantes, se distinguen los aglomerantes sin relleno y con relleno. Variando las resinas fenólicas y los rellenos se ajustan las propiedades del aglomerante. El desgaste de aglomerante se lleva a cabo mediante el calor que se origina durante el amolado y la presión abrasiva. Los aglomerantes resinoides se adecúan, por su elasticidad, al rectificado de pulido y de precisión así como al desbaste y al rectificado en seco. Al utilizar emulsiones se debe prestar atención a que el valor de pH no se encuentre considerablemente por encima de 9, ya que, de lo contrario, pueden atacar el aglomerante resinoide.

Tipos de aglomerante

Aglomerante resinoide	Mecanizado	Aglomerante cerámico
PBD, REI	Rectificado plano	VY, VE, VF, VU, VO
-	Rectificado profundo de perfil	WVY, VF, VO
PBD, DC	Rectificado plano por dos lados	VK, VE, VO
DC, REI	Rectificado cilindrico entre centros	RVJ, VX, VO
REI, PBD, ES	Rectificado sin centro en plongé	VK, VT, VF, VO
REI, DM, HS	Rectificado continuo sin centros	VO, VK, VT, VF
ED1, ED9	Muelas de Arrastre	V 22
PBD, AX, AL7, DP	Rectificado de cilindros	VE, VF, VO
REI, AX, AC	Rectificado de barras	VO, VK, VD, VF
-	Rectificado de roscas	VF, VO
-	Rectificado de engranes	VF, VY
ES	Rectificado de rodillos cónicos y de caras	-
AL7	Rectificado de agujas hipodérmicas	-
AX, BM	Rectificado de muelles	VU
REH, REC	Rectificado de bolas	307
		Para corindón sinterizado como tipo
		de aglomerante VB o VY

Los datos antes indicados reflejan aplicaciones exitosas de los sistemas aglomerantes detallados. Para el caso de aplicaciones especiales, se pueden proponer además sistemas aglomerantes distintos.

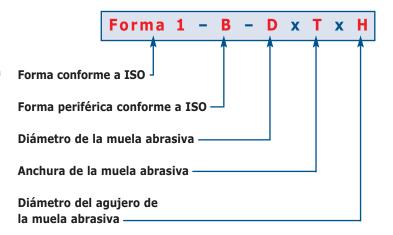
Formas ISO

Todas las formas son viables

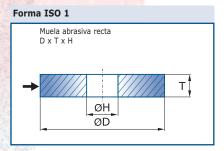
Las muelas abrasivas **ATLANTIC** están disponibles en todas las formas convencionales.

Las figuras de las páginas siguientes reflejan una gran variedad de formas.

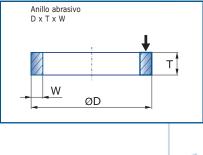
Las formas no estandarizadas se fabrican según diagrama por deseo del cliente.

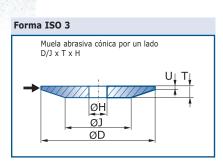

Notación

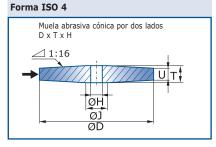
A	La anchura más pequeña de los segmentos
В	Anchura de segmentos y piedras de bruñir
С	Altura de segmentos y piedras de bruñir
D	Diámetro exterior de muelas abrasivas
E	Espesor del centro
F	Profundidad del primer rebaje de la muela abrasiva
G	Profundidad del segundo rebaje de la muela abrasiva
Н	Diámetro del agujero
HG	Diámetro de rosca en tuercas con rosca interior*
J	Diámetro de la superficie de contacto
K	Diámetro de la superficie de sujeción
L	Longitud de segmentos y piedras de bruñir
N	Profundidad de la conicidad de las muelas abrasivas
NG	Número de tuercas con rosca interior*
P	1. diámetro de rebaje de la muela abrasiva
P1	2. diámetro de rebaje de la muela abrasiva
R	Radio
T	Anchura total
TG	Profundidad de las tuercas con rosca interior*
U	Pequeña anchura de muela cónica
V	Ángulo de capa / de perfil
W	Grosor de pared / anchura de la pared abrasiva
-	Superficie principal de trabajo

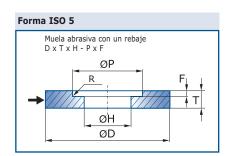

^{*} no conforme a ISO 525

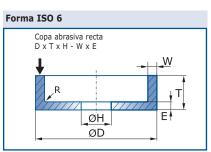

Ejemplo

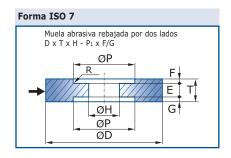

Para determinadas aplicaciones se perfila la superficie de trabajo de la muela abrasiva. Este perfil se denomina forma periférica y también está normalizado.

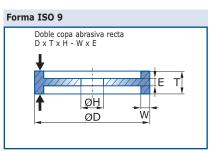


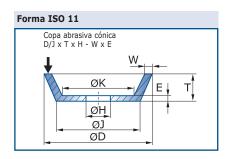

Una selección de formas ISO

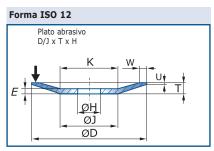


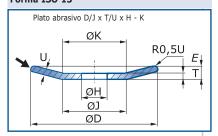


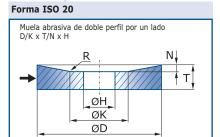


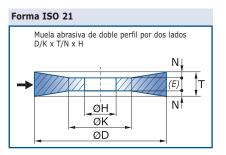


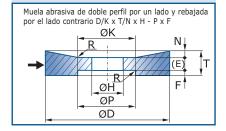


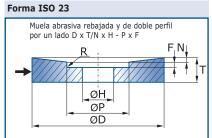


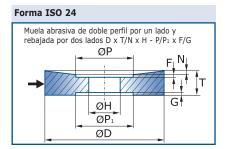


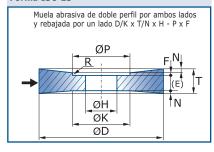


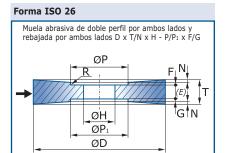

⇒ = Superficie principal de trabajo

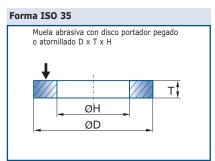

Forma ISO 13

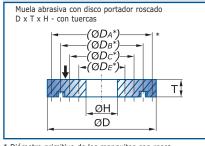


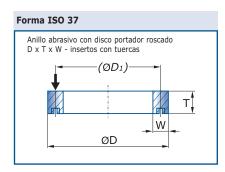


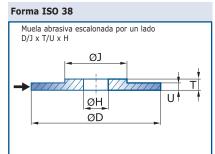

Forma ISO 22



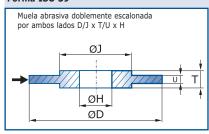


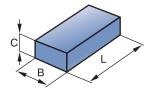

Forma ISO 25



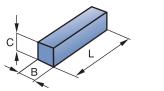


Forma ISO 36

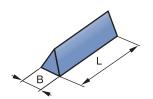


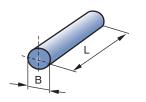


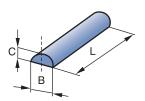
Forma ISO 39



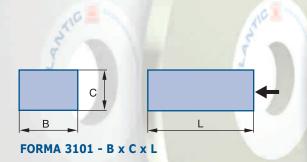
Formas ISO

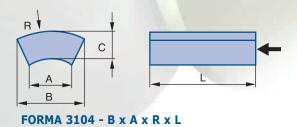

Barras abrasivas y piedras de repasar

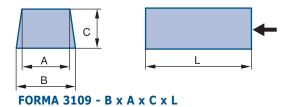

FORMA 9010 - B x C x L

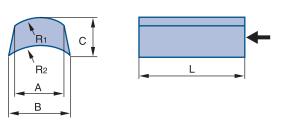

FORMA 9011 - B x C x L

FORMA 9020 - B x L

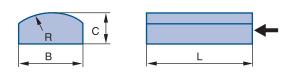


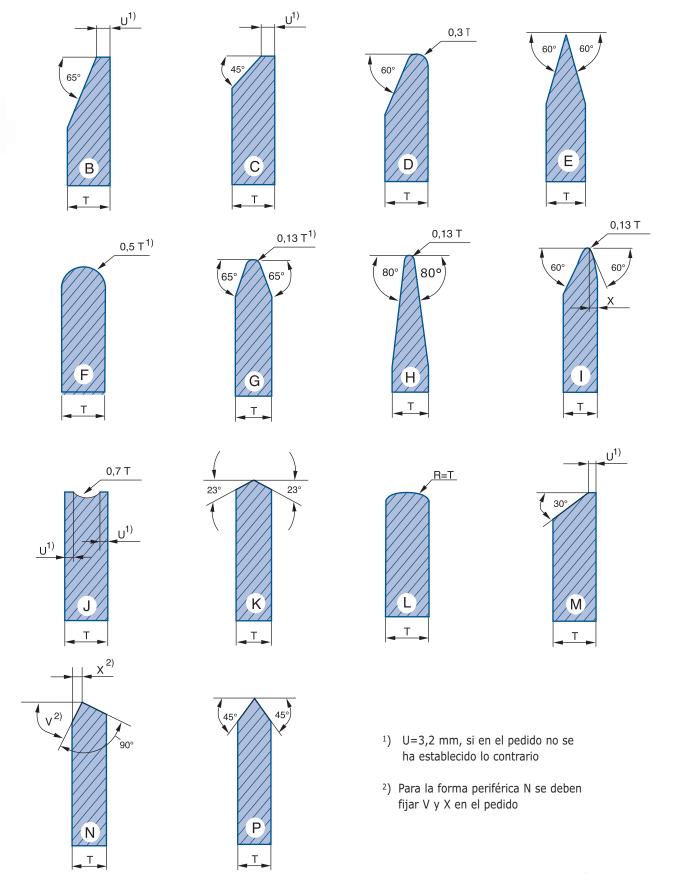

FORMA 9030 - B x L




FORMA 9040 - B x C x L

Segmentos abrasivos





Medidas según indicaciones del cliente

Formas periféricas conforme a ISO

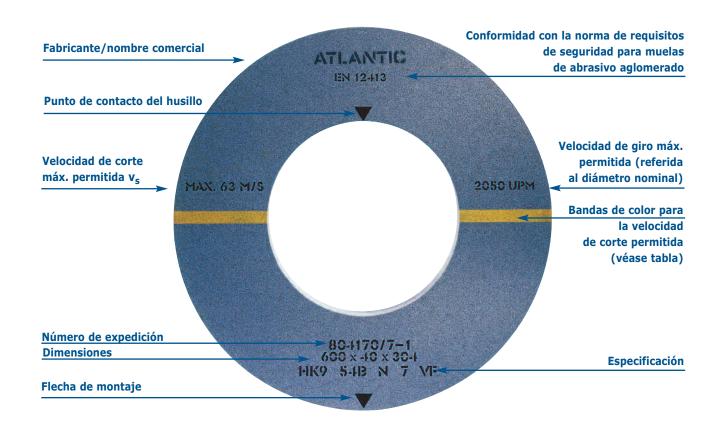
Sujeción de las muelas abrasivas - velocidades de corte

Sujeción de las muelas abrasivas

Las muelas abrasivas **ATLANTIC** cumplen la norma DIN EN 12413 en el estado de suministro.

El centro de gravedad de las muelas abrasivas está señalado con dos triángulos debido al desequilibrio inevitable desde un punto de vista de la ingeniería de fabricación.

A consecuencia del juego entre el agujero de la muela abrasiva y el husillo, la muela abrasiva cuelga y, como consecuencia de la excentricidad, se produce un desequilibrio adicional.


Por este motivo, al sujetar se debe tener en cuenta obligatoriamente que las puntas de los triángulos señalen hacia abajo. Si la sujeción es correcta, estos dos desequilibrios se reducirán considerablemente en el diamantado subsiguiente.

Antes de detener o desmontar la muela abrasiva es importante un centrifugado cuidadoso del refrigerante.

Velocidades de corte

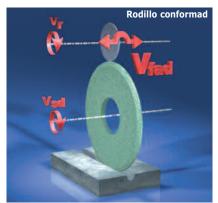
La velocidad de corte máxima permitida se indica en las muelas abrasivas **ATLANTIC** de la forma siguiente y no se puede sobrepasar bajo ninguna circunstancia.

Velocidad de corte	Bandas de color
hasta 40 m/s	ninguna
50 m/s	azul
63 m/s	amarillo
80 m/s	rojo
100 m/s	verde
125 m/s	azul/amarillo

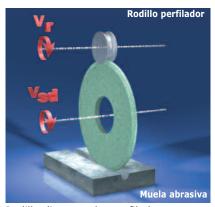
Diamantado de muelas abrasivas - refrigerantes

Diamantado de muelas abrasivas con herramientas de reavivado

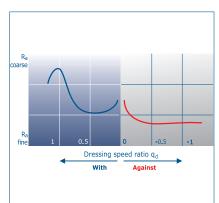
Un parámetro característico importante al diamantar con una herramienta de reavivado vertical es la relación de contacto $U_{\rm d.}$


Describe la relación entre el ancho efectivo de la herramienta de diamantado y el avance de reavivado. A través de la relación de contacto se puede modificar, con ciertas limitaciones, la propiedad de corte de la muela abrasiva.

$$U_{d} = \frac{b_{d}}{f_{ad}}$$


Relación de contacto U_d Ancho efectivo de la herramienta de reavivado b_d Avance de reavivado f_{ad} Las relaciones de contacto elevadas (es decir, un avance de reavivado reducido) suponen una superficie de muela abrasiva fina, una relación de contacto baja produce una superficie de muela abrasiva más gruesa.

Diamantado de muelas abrasivas con herramientas de reavivado giratorias


Al diamantar/perfilar se repasa un perfil prefijado en la muela abrasiva con un disco de diamante giratorio para reavivar muelas.

Controlado por contorneo

Rodillo diamantador perfilado

Magnitudes influyentes en el diamantado controlado por contorneo

- Relación de velocidad
 q_d = v_r / v_{sd}
- Marcha síncrona/en sentido contrario
- Avance transversal por revolución de la muela f_d
- Aproximación a_d

Magnitudes influyentes en el diamantado controlado por perfilado

- Relación de velocidad
 q_d = v_r / v_{sd}
- Marcha síncrona/en sentido contrario
- Avance transversal por revolución de la muela v_{fd}

Influencia de la marcha síncrona/en sentido contrario junto con la relación de velocidad de diamantado (q_d) auf sobre la rugosidad de salida

Refrigerantes

Las tareas del refrigerante durante el rectificado son refrigerar, lubricar y transportar virutas. Dentro del refrigerante, se distinguen dos grupos:

- Emulsiones
- Aceites puros

Emulsiones

En el caso de emulsiones, se trata de aceite en mezcla con agua. La concentración aplicada convencional de la emulsión se encuentra entre un 3 y 5 % en el rectificado. Las emulsiones tienen un efecto refrigerante superior, pero un efecto lubricante más reducido que los aceites puros.

Las emulsiones son idóneas para el trabajo con herramientas CBN.

En comparación con el aceite, se producirá una considerable reducción de la vida de la muela.

Aceites puros

Debido al mejor efecto de lubricación, se reduce la producción de calor en la zona de contacto abrasivo.

Los aceites abrasivos se emplean principalmente en el rectificado de roscas y de engranes, en el pulido y acabado así como al utilizar herramientas de diamante y CBN.

Rectificado plano

Para el rectificado plano se emplean principalmente muelas abrasivas cerámicas. La calidad de la superficie se puede controlar por medio de la composición de las muelas así como los parámetros de mecanizado. Debido a las múltiples condiciones de aplicación, las calidades mencionadas sólo son válidas como punto de referencia.

Rectificado plano	Especificación ATLANTIC
Aceros cementados y herramientas de aceros de una o varias aleaciones, en dureza hasta 63 HRC	EK1 46 - F7 VF
más de 63 HRC	EK1 46 - E8 VY
Acero templado	EK8 46 - G7 VY
Fundición gris	SC9 46 - G7 VU
Metales no férricos y aleaciones ligeras	SC9 46 - E8 RE PBD
Aceros de alta aleación	EK8 46 - F7 VF
Acero de cromo	EK6 46 - E9 VY 207

Rectificado plano de perfil

El rectificado plano de perfil se divide en rectificado de péndulo y rectificado profundo. En el rectificado profundo se mecaniza con pasada profunda y avance reducido. Para la salida de viruta y un caudal suficiente de refrigerante es importante un volumen poroso suficiente en la muela abrasiva. Las muelas abrasivas de perfil se fabrican en aglomerante cerámico. Gracias a la calidad especial se alcanza una gran estabilidad de la forma. Debido a las condiciones múltiples de aplicación, las calidades mencionadas sólo son válidas como punto de referencia.

Rectificado plano de perfil, péndulo	Especificación ATLANTIC
Aceros cementados y herramientas de aceros de	EK8 60 - D12 VE 25 N
una o varias aleaciones, en dureza hasta 63 HRC	
más de 63 HRC	SC9 100 - B10 VO 258
Acero templado	EK8 70 - C12 WVY 407
Aceros de alta aleación	EK6 70 - C11 VF 357

Rectificado profundo	Especificación ATLANTIC
Aceros cementados y herramientas de aceros de	EK8 100 - B12 WVY 407
una o varias aleaciones, en dureza hasta 63 HRC	
más de 63 HRC	SC9 100 - A 12 VO 408
Acero templado	EK8 60 - B13 VE 25X
Aceros de alta aleación	EK8 80 - A 14 VEB 50X
Álabes de turbinas (muelas CD*)	EK8 60 - C 12 WVY 407

^{*} diamantado continuo

Rectificado cilíndrico exterior entre puntos

El rectificado cilíndrico exterior entre puntos es el rectificado de diámetros exteriores y/o superficies planas de herramientas con rotación simétrica en el cual el alojamiento de herramienta y

los puntos de centrado están sujetos. Casos típicos de aplicación son el mecanizado de árboles, ejes, pernos, cigüeñales, árboles de levas y cilindros hidráulicos. Debido al contacto lineal entre muela abrasiva y pieza de trabajo, es posible una buena refrigeración en la zona de contacto de rectificado.

	Especificación ATLANTIC	
Material	Estándar	De alto rendimiento
Aplicación universal, diversos materiales endurecido y no endurecido	EK1 70 - I8 RVJ	
Aceros cementados y herramientas de aceros de una o varias aleaciones, en dureza hasta 63 HRC	EK8 60 - J7 VX	EX3 80 - K7 VY
Acero rápido hasta 63 HRC Acero rápido de más de 63 HRC	EK1 60 - I7 RVJ SC9 60 - H8 VO	EX3 80 - J7 VY
Acero templado	EK8 60 - I6 RVJ	EX3 60 - J8 VY
Fundición gris Metales no férricos y aleaciones ligeras	SC9 80 - I6 VO SC9 54 - I8 VO	
Aceros de alta aleación	SC9 120 - F8 VU	EX3 100 - J7 VY
Acero de cromo	EK6 80 - F8 VF	EX3 100 - G8 VY

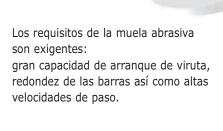
Rectificado sin centros

En el rectificado en enfilada, la pieza de trabajo es centrada por la muela abrasiva, la muela de regulación y la regla de apoyo y se pasa por entre las muelas. Gracias al soporte en forma de línea, también se pueden rectificar piezas largas y de poco espesor.

En el rectificado en plongé, la muela abrasiva se aproxima a la pieza de trabajo. De esta forma, se pueden rectificar piezas o perfiles escalonados. En el rectificado sin centro se emplean aglomerantes cerámicos al rectificar diámetros pequeños y piezas de traba-

jo de pared delgada. Las muelas abrasivas con aglomerante resinoide se emplean sobre todo cuando se requieren grandes prestaciones de desgaste, un elevado efecto de autoafilado o superficies de calidad especialmente buena.

Rectificado sin centros - Enfilada


Pieza	Material	Dureza	Medida ex- cedente(mm)	Superficie (µm)	Especificación ATLANTIC
Amortiguadores	Acero templado	58 HRC	0,3	<2,0 R _z	Entrada: EX7 60 - M6 RE REI
desbaste	Inducción				Centro: EK3 80 - L6 RE REI
(antes del cromado)	Endurecido				Salida: EK3 100 - K6 RE REI
Amortiguadores			0,1	<1,0 R _z	Entrada: EK1 180 - K8 RE REI
acabado					Salida: EK1 320 - J9 RE REI
(antes del cromado)					
Amortiguadores	Cromo		0,05	0,1 R _a	Entrada: NK1 180 - O12 RE HD
acabado					Salida: NK1 280 - O12 RE HD
(después del cromado)					
Aros de rodamiento	100 Cr 6	62 HRC	0,3	0,4 R _a	HK9 60H - J5 VK
Ejes	Acero templado	58 HRC	0,2	1,5 R _z	Entrada: EK1 100 - H7 VF
					Salida: EK1 220 - H7 VF
Ejes	Acero cementado	62 HRC	0,2	0,4 R _a	EK1 80 - H5 VT
Brocas	HSS	64 HRC	0,15	0,4 R _a	EK3 80 - 06 RE AX
Muelas de arrastre			Aglomerante	de resina	NK1 120 - B ED9
			Aglomerante	de cerámica	NK1 150 - Z10 V 22

Rectificado sin centros - En plongé

Pieza	Material	Dureza	Medida ex- cedente(mm)	Superficie (µm)	Especificación ATLANTIC
Ejes y pernos	Acero cementado	Duro	0,3	1,3 R _z	EK1 150 - J7 RVF
		У			
		blando			
Pernos	Acero templado		0,2	0,6 R _a	HK9 60 - J5 RVJ
Punzones cilíndricos	Acero de herramientas	62 HRC		0,4 R _a	EK1 80 - J7 VE
Rodamientos de bolas	Acero de rodamientos	60 HRC	0,5	0,4 R _a	HK7 100 - M9 RE HS
Machos	HSS	62 HRC	0,3	0,6 R _a	EK8 70 - L6 RVJ
Árbol de levas	Hierro fundido		0,2	2,5 R _z	EB3 60 - J7 VB
Ejes	Aluminio		0,15	2,0 R _z	SC9 60 - H9 VO 206 W
Muelas de arrastre		Aglomerante de resina		NK1 120 - B ED9	
			Aglomerante de cerámica		NK1 150 -Z10 V 22

Rectificado de barras

El rectificado de barras es un proceso de rectificado sin centros y se emplea principalmente en la industria del acero. La medida total excedente se desgasta en uno o varios pasos. Característica de este proceso es la longitud de la pieza que es de varias veces la anchura de la muela abrasiva.

Rectificado de barras

Material	Dureza	Medida ex- cedente (mm)	Superficie (µm)	Especificación ATLANTIC
Distintos	duros y	0,25	0,4 R _a	HKT 54 - I6 VK
materiales	blandos			
Acero templado	templado	0,25		NK1 60 - J7 VF
Acero de herramientas	blando	0,25	0,4 Ra	SC8 54 - 04 RE AC
Acero para muelles		0,25	3,0 Rz	SC9 54 - 06 VD
HSS	63 HRC	0,2	0,4 Ra	EK3 70 - P6 RE AX
Acero de alta aleación		1,0	0,7 R _a	Entrada: NS5 46 - M6 RE REI
				Salida: NS5 54 - K6 RE REI

Rectificado cilíndrico de interiores

Para el rectificado cilíndrico de interiores se utilizan estructuras relativamente abiertas debido a la gran fricción superficial entre la pieza y la muela abrasiva para garantizar la evacuación de las virutas y un caudal suficiente de lubricante refrigerante en la zona de contacto. Cuando rectificamos piezas de pared delgada, la presión de apriete no puede ser demasiado alta. Para un mecanizado económico, el diámetro de la muela abrasiva debe ser aproximadamente el 80 % del diámetro del agujero.

Rectificado cilíndrico de interiores

	Especificación ATLANTIC		
Material	Estándar	De alto rendimiento	
Aceros cementados y herramientas de aceros	HK9 80 - I7 VK	EK1 70 - I8 VE	
de una o varias aleaciones, en durezas hasta 63			
Acero templado	EK8 60 - I7 VY	EX5 54 - J7 VY	
Acero rápido hasta 63 HRC	EK8 60 - K6 VU	EX3 60 - J7 VY	
Acero rápido de más de 63 HRC	SC9 80 - M5 VD	EX3 80 - J7 VY	
Fundición gris	NK1 60 - K7 VK	EX5 60 - K8 VY	
Metales no férricos y aleaciones ligeras	SC9 60 - J6 VU		
Acero de cromo	EK6 100 - I7 VY	EX5 100 - I8 VY	

Rectificado de engranes

El rectificado de engranes se divide en rectificado de perfiles y rectificado por generación. En el rectificado de perfiles, el perfil de la muela es igual al de la pieza. Por el contrario, en el rectificado por generación, el perfil de engranes se obtiene a través del mando de la máquina.

Rectificado de engranes

Pieza de trabajo	Material	Dureza	Módulo	Especificación ATLANTIC
Engranes	Acero cementado	58-62 HRC	0,8 - 3,5	EK8 100 - E10 VF 358 o
de transmisión				EK1 120 - F11 VY 408
		58-62 HRC	3,75 - 8	EX3 120 - G11 VY 408
		58-62 HRC	< 2,0	EX3 120 - C13 VY 508
Engranes sinfín	Acero cementado	58-62 HRC	0,5 - 3	EK8 80 - F11 VF 307
			4 - 20	EK1 80 - F11 VF 307
			21 - 25	EK 54 - F10 VF 257
				EK1 46 - G9 VF 207
Engranes	HSS	63 HRC	2,5	EX3 100 - G11 VY 408

Rectificado de roscas

En el rectificado de roscas, además de la mecanizabilidad del material de la pieza y de la calidad requerida de la superficie, el paso de rosca y el radio del núcleo es un criterio esencial para establecer la calidad de la muela. Se utilizan principalmente muelas de grano fino en un rango de 150-600. Gracias a una aglomerante ajustado específicamente, en combinación con una refrigeración optimizada, se minimiza el riesgo de sobrecalentamiento. Las muelas de rectificado de roscas se caracterizan por una estructura especialmente homogénea hasta en perfiles pequeños.

Con ello se reduce considerablemente el desgaste del radio del núcleo, lo que conlleva ventajas considerables en la calidad y la duración de la herramienta.

Rectificado de roscas - Rectificado monoperfil de roscas Velocidad de corte menor o igual a 40 m/s

			Especificaci	ón ATLANTIC
Paso de rosca métrica ISO en mm		métrica ISO	Acero rápido HSS, fundición	Acero de herramientas templado, acero de bonificación
0,25	-	0,35	SC9 500 - J9 VO	EK1 500 - J8 VF
0,40	-	0,70	SC9 400 - J9 VO	EK1 400 - J8 VF
0,80	-	1,0	SC9 320 - K8 VO	EK1 320 - J8 VF
1,25	-	1,5	SC9 280 - K8 VO	EK1 240 - J7 VF
1,75	-	2,5	SC9 220 - J8 VO	EK1 220 - J7 VF
3,0	-	4,0	SC9 180 - I8 VO	EK1 180 - H6 VF
5,0	-	5,5	SC9 180 - H8 VO	EK1 180 - H6 VF
6,0			SC9 150 - H7 VO	EK1 150 - F6 VF

Rectificado de roscas – Rectificado monoperfil y multiperfil de roscas Velocidad de corte mayor que 40 m/s

		Especificaci	ón ATLANTIC	
Paso de rosca métrica ISO en mm		Acero rápido HSS, fundición	Acero de herramientas templado, acero de bonificación	
	0.05	•		
0,25	- 0,35	SC9 500 - H8 VO	EK1 400 - H7 VF	
0,40	- 0,70	SC9 400 - H8 VO	EK1 320 - I7 VF	
0,80	- 1,0	SC9 320 - I8 VO	EK1 280 - I7 VF	
1,25	- 1,5	SC9 240 - I7 VO	EK1 220 - H6 VF	
1,75	- 2,5	SC9 180 - H7 VO	EK1 220 - H7 VF	
3,0	- 4,0	SC9 150 - G7 VO	EK1 150 - H6 VF	
5,0	- 5,5	SC9 120 - G7 VO	EK1 120 - H6 VF	
6,0		SC9 100 - G6 VO	EK1 120 - G6 VF	

Muelas fundidas de rectificado de roscas	Especificación ATLANTIC	
Macho de roscar	SC9 400 - I20 VOH	
Rodillo para hacer roscas	SC9 320 - H20 VOF 53	

Rectificado de cilindros

Además de tiempos de rectificado cortos y una gran capacidad de desgaste, de la muela abrasiva se exige una alta calidad de superficie. En trenes de laminación en caliente, las calidades de superficie de 0,4-2,0 μ m R_a para cilindros de trabajo y 0,6-1,2 μ m R_a para cilindros de apoyo son magnitudes corrientes.

Rectificado de recuperación de trenes de laminación en caliente

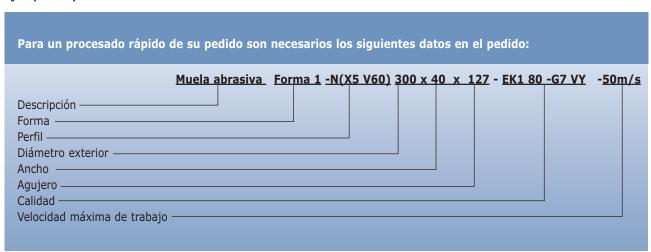
			Especificación ATLANTIC	
Tipo de cilindro	Material del cilindro	Superficie R _a (µm)	Estándar	De alto rendimiento
Cilindros	(HSS)	0,4 - 0,8	EK3 46 - J6 RE PBD	EX6 46 - J6 RE PBD
de trabajo	Alto en cromo	0,6 - 1,2	EK3 36 - K6 RE PBD	EX6 36 - K6 RE PBD
		> 1,6	EK3 24 - K6 RE PBD	EX6 24 - K6 RE PBD
	Indefinido	0,4 - 0,8	SC5 46 - J6 RE PBD	SX6 46 - J6 RE PBD
		0,6 - 1,2	SC5 36 - K6 RE PBD	SX6 36 - K6 RE PBD
		> 1,6	SC5 24 - J6 RE PBD	SX6 24 - K6 RE PBD
	Todos	0,4 - 0,8	SC5 46 - J6 RE PBD	SX6 46 - J6 RE PBD
		0,6 - 1,2	SC5 30 - K6 RE PBD	SX6 36 - K6 RE PBD
		> 1,6	SC5 24 - K6 RE PBD	SX6 24 - K6 RE PBD
Cilindros de apoyo	Todos	-	EK3 30 - K6 RE PBD	EX6 30 - K6 RE PBD

Rectificado de recuperación de cilindros

En el rectificado de puesta a punto o de recuperación se debe alcanzar un buen compromiso entre el gran volumen de desgaste y buena calidad de superficie - desde el punto de vista visual y de medida. Como otra característica especial, los cuerpos de los cilindros suelen tener que ser rectificados, cóncavos, convexos o con otra forma especial (p. ej. CVC). Más aún que en el rectificado de desbaste de cilindros, los costes totales del proceso de rectificado para la recuperación se ven afectados por la tasa por hora de la máquina, de forma que se debe encontrar un proceso óptimo de rectificado para hacer el desbaste y el acabado.

Las muelas abrasivas **ATLANTIC** permiten implementar soluciones óptimas por su aplicación universal, sus elevados estándares técnicos y su amplio abanico de calidades. El rendimiento de las muelas abrasivas se mide todavía hoy sobre todo por la vida útil – léase **número de cilindros rectificados** – de las muelas abrasivas.

Otro criterio para estimar el rendimiento de las muelas abrasivas es el tiempo de mecanizado por cilindro. Para los cilindros de trabajo, está admitido un tiempo de 1 h; para los cilindros de apoyo, de 6 h-8 h. Sin embargo, como consecuencia de la presión creciente de los costes, también crecen en este punto las demandas de tiempos reducidos de rectificado con la automatización creciente. Se pueden realizar tiempos de 25 a 35 minutos para cilindros de trabajo y de 90 a 120 para cilindros de apoyo con máquinas modernas y herramientas abrasivas **ATLANTIC** adaptadas para ello.


Rectificado de cilindros

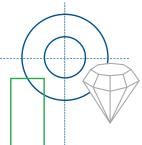
En los trenes de laminado en frío se requieren calidades de superficie de 0,4-0,03 R_a. Las especificaciones mencionadas presentan soluciones de éxito. Puede ser necesario adaptar las especificaciones para una optimización a las condiciones del lugar.

Rectificado de recuperación de trenes de laminado en frío

			Especificación ATLANTIC	
Tipo de cilindro	Material del cilindro	Superficie R _a (µm)	Estándar	De alto rendimiento
Cilindros	Acero forjado	0,4 - 0,8	EK3 46 - H6 RE DP	-
de trabajo		0,3 - 0,6	EK3 60 - H6 RE DP	-
	HSS	0,2 - 0,4	EK3 80 - H6 RE DP	-
		0,1 - 0,4	EK3 100 - G6 RE DP	-
		0,08 - 0,12	EK1 180 - F10 RE PBD	-
		0,06 - 0,08	EK1 320 - G11 RE ES	-
		0,05 - 0,07	EK1 500 - G11 RE ES	-
		0,05 - 0,03	PK2 800 - F10 RE ER	-
Cilindros	Acero		EK3 30 - J6 RE PBD	EX6 30 - I6 RE PBD
de apoyo	Indefinido		SC5 30 - I6 RE PBD	SX6 30 - J6 RE PBD

Ejemplo de pedido:

ATLANTIC GmbH


Gartenstrasse 7-17 53229 Bonn, Alemania

Tel. + 49 (228) 408-0 Fax + 49 (228) 408-290

e-mail: info@atlantic-bonn.de www.atlantic-bonn.de

Gama de suministro - Muelas abrasivas - Piedras de bruñir

Los resultados deseados se obtienen gracias a los abrasivos seleccionados de forma óptima y a las especificaciones individuales del programa de acabado **ATLANTIC**.

Fabricamos:

- Muelas abrasivas y segmentos
- Herramientas de bruñir y de superacabado
- De 2 a 1250 mm de diámetro
- En corindón y carburo de silicio
- En diamante y CBN
- En aglomerante cerámico y resinoide
- Hasta grano 2000 y en calidad superfina para obtener las superficies más finas

En todos los tamaños y formas convencionales. Se fabrican formas especiales por deseo del cliente bajo plano.

Rectificado plano

Rectificado plano de perfil

Rectificado cilíndrico exterior

Rectificado cilíndrico de interiores

Rectificado centerless

Rectificado de barras

Rectificado de cilindros

Rectificado de roscas

Rectificado de engranes

Rectificado de cigüeñales

Rectificado de árbol de levas

Rectificado de bolas

Rectificado de herramientas

Rectificado de pistas de rodadura

Rectificado de agujas hipodérmicas